Accurate registration of random radiographic projections based on three spherical references for the purpose of few-view 3D reconstruction.
نویسندگان
چکیده
Precise registration of radiographic projection images acquired in almost arbitrary geometries for the purpose of three-dimensional (3D) reconstruction is beset with difficulties. We modify and enhance a registration method [R. Schulze, D. D. Bruellmann, F. Roeder, and B. d'Hoedt, Med. Phys. 31, 2849-2854 (2004)] based on coupling a minimum amount of three reference spheres in arbitrary positions to a rigid object under study for precise a posteriori pose estimation. Two consecutive optimization procedures (a, initial guess; b, iterative coordinate refinement) are applied to completely exploit the reference's shadow information for precise registration of the projections. The modification has been extensive, i.e., only the idea of using the sphere shadows to locate each sphere in three dimensions from each projection was retained whereas the approach to extract the shadow information has been changed completely and extended. The registration information is used for subsequent algebraic reconstruction of the 3D information inherent in the projections. We present a detailed mathematical theory of the registration process as well as simulated data investigating its performance in the presence of error. Simulation of the initial guess revealed a mean relative error in the critical depth coordinate ranging between 2.1% and 4.4%, and an evident error reduction by the subsequent iterative coordinate refinement. To prove the applicability of the method for real-world data, algebraic 3D reconstructions from few (< or = 9) projection radiographs of a human skull, a human mandible and a teeth-containing mandible segment are presented. The method facilitates extraction of 3D information from only few projections obtained from off-the-shelf radiographic projection units without the need for costly hardware. Technical requirements as well as radiation dose are low.
منابع مشابه
Ultra-Fast Image Reconstruction of Tomosynthesis Mammography Using GPU
Digital Breast Tomosynthesis (DBT) is a technology that creates three dimensional (3D) images of breast tissue. Tomosynthesis mammography detects lesions that are not detectable with other imaging systems. If image reconstruction time is in the order of seconds, we can use Tomosynthesis systems to perform Tomosynthesis-guided Interventional procedures. This research has been designed to study u...
متن کاملIndividual virtual phantom reconstruction for organ dosimetry based on standard available phantoms
Background: In nuclear medicine application often it is required to use computational methods for evaluation of organ absorbed dose. Monte Carlo simulation and phantoms have been used in many works before. The shape, size and volume in organs are varied, and this variation will produce error in dose calculation if no correction is applied. Materials and Methods: A computational framewo...
متن کامل3D/2D registration and segmentation of scoliotic vertebrae using statistical models.
We propose a new 3D/2D registration method for vertebrae of the scoliotic spine, using two conventional radiographic views (postero-anterior and lateral), and a priori global knowledge of the geometric structure of each vertebra. This geometric knowledge is efficiently captured by a statistical deformable template integrating a set of admissible deformations, expressed by the first modes of var...
متن کاملConventional Voxel in Tomographic Reconstruction Based upon Plane-Integral Projections – Use It or Lose It?
Introduction: While the necessity of replacing voxels with blobs in conventional tomographic reconstruction based upon line-integrals is clear, it is not however well-investigated in plane- integral-based reconstruction. The problem is more challenging in convergent-plane projection reconstruction. In this work, we are aiming at utilizing blobs as alternative to voxels. <stron...
متن کاملSurface reconstruction of detect contours for medical image registration purpose
Although, most of the abnormal structures of human brain do not alter the shape of outer envelope of brain (surface), some abnormalities can deform the surface extensively. However, this may be a major problem in a surface-based registration technique, since two nearly identical surfaces are required for surface fitting process. A type of verification known as the circularity check for th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Medical physics
دوره 35 2 شماره
صفحات -
تاریخ انتشار 2008